
Lab 10: Creating and Using ActiveX Documents
For background information on this lab, click each of these topics:

Objectives
By the end of this lab, you will be able to:

 Use the ActiveX Document Wizard to convert forms into an ActiveX document server.
 Add properties to an ActiveX document.
 Enhance the user interface of an ActiveX document.
 Create a document container.

Prerequisites
Before working on this lab, you should be familiar with the following concepts:

 ActiveX document project fundamentals

Lab Setup
To complete this lab, you need the following:

 Visual Basic 5.0 or later
 Internet Explorer 3.0 or later
The exercises in this lab use Internet Explorer, but they will also work with any valid document
container.

To see a demonstration of the completed lab solution, click this icon.

Estimated time to complete this lab: 45 minutes

Note There are project and solution files associated with each lab. If you installed the labs
during Setup, these files are in the folder <Install Folder>\Labs on your hard disk. If you did not
install the labs during Setup, you can find them in the \Labs folder of the Mastering Microsoft
Visual Basic 5 CD-ROM.

Exercises
The following exercises provide practice working with the concepts and techniques covered in
Chapter 10.

Exercise 1: Converting Forms to ActiveX Documents
In this exercise, you will use the ActiveX Document Wizard to convert an existing forms-based
project to an ActiveX document server.

Exercise 2: Adding Properties to ActiveX Documents
In this exercise, you will enhance ActiveX documents.

Exercise 3: Extending User Interface Functionality
In this exercise, you will enhance the user interface of the container based on the requirements
of the document object. You will also modify one of the documents so that it is always centered
within the container.

Exercise 4: (Optional) Creating a Document Container

In this exercise, you will modify the project to allow the executable file to run as a stand-alone
application and to display the document objects within their own context.

Exercise 1: Converting Forms to ActiveX Documents
In this exercise, you will use the ActiveX Document Wizard to convert an existing forms-based
project to an ActiveX document server.

You will convert the Main form and Order Details form in an existing database application to
ActiveX documents. You will then test the new ActiveX document files by associating them with
Internet Explorer, and invoking them.

 Run the ActiveX Document Wizard
1. In the Visual Basic environment, open the project in Lab10.
2. Use the ActiveX Document Wizard to create an ActiveX EXE project and convert the form

frmHome to an ActiveX document.
In the Project Explorer, the project should now consist of two forms (frmOrders and
frmOrderDetails) and one user document. Modify the name of the user document to
docHome.

 Modify the user document
1. Remove the Exit Application button from the docHome document.

The Exit Application button does not provide any appropriate behavior in this context. If you
view the underlying code for the Click event for the button's click event, you will see that the
ActiveX Document Wizard has commented out the invalid code.

2. Save the project.

 Test the ActiveX Document in the container
1. Associate Visual Basic ActiveX (.vbd) files with Internet Explorer.

a. Open either My Computer or the Windows Explorer.
b. On the View menu, click Options, and then select the File Types property page.
c. Add a new file type that associates .vbd files with Internet Explorer (IExplore.exe).

2. Switch to Visual Basic and run the project.
There are not any visible forms because the output from running this project is the .vbd file.

Note While running the project in Visual Basic, the .vbd files are created in the Visual Basic
folder, and when running exe or .dll files, the .vbd files are created in the .Exe or .Dll folders.

3. In the My Computer or Windows Explorer window, switch to the Visual Basic folder and run
the ActiveX file docHome.vbd.
This should cause the file to be loaded into your document container.

4. Once the .vbd file has been loaded properly, exit Internet Explorer, return to Visual Basic,
and then explicitly end the program.

 Convert the Order Details form to an ActiveX document
1. Add a new module to the project.
2. Declare the public variable sDocPath to hold the document path.
3. In the docHome user document, add code to the Initialize event, and set the sDocPath

variable to point to the Visual Basic folder (for example, C:\Program Files\Vb\).
4. Using the ActiveX Document Wizard, follow the same steps as before to convert the

frmOrders form into an ActiveX document, and rename the document to docOrders.

 Add code for controls to navigate between the two documents

In the new document, the Close button is not appropriate in the current context. In this next
procedure, you will change this button so that users can return to the docHome user document
only if they have first invoked the docOrders document from the docHome document.
1. Change the Caption property of the Close button (cmdClose) to Home.
2. Add code to the user document for the InitProperties event to enable the Home button only if

the path variable sDocPath has been initialized.
3. In the Click event for the Home button, use the NavigateTo method of the document's

Hyperlink object to return to the docHome document.
4. Switch to the docHome document, and then update the Click event for the Orders button to

navigate to the docOrders document.

 Test the functionality of the application
1. Click the Orders button on the main form to invoke the docOrders document.
2. Make sure that the database functionality still works correctly, including moving through,

adding, modifying, and deleting records.
3. Invoke the Details form for any order.
4. Use the Home button to return to the docHome document.

Exercise 2: Adding Properties to ActiveX Documents
In this exercise, you will enhance the ActiveX documents that you created in the previous
exercise.

You will add a custom property to the Orders document to store the current Order ID and make
the current Order ID externally available. You will then add the necessary code to the
UserDocument object to make that property value persistent. When users open the user
document again, they should see the same record that was displayed when the document was
closed.

 Create the custom property OrderID for the Orders document
1. Add the procedure FindOrderByOrderID to the Orders document.

This procedure should take OrderID as a parameter and move to the associated record, if
that record exists.

2. Declare the function as Private. The function should also take a variant as a parameter and
return a Boolean.

3. If the Order ID is a negative number, move to the first record in the recordset.
4. Use the FindFirst method of the DAO Recordset object to find the associated record. If no

match exists, use a bookmark to return to the current record, and return a value of False.
The Data control has the Recordset property.

 Add the OrderID property to the user document
1. Add the OrderID property to the docOrders document, and include code in the PropertyGet

procedure that returns the current Order ID.
2. Add code to the PropertyLet procedure to move to the associated order, if it exists, and then

update the document with the new order information.
3. On the Tools menu, click Add Procedure, and add the public property OrderID.
4. In the PropertyGet procedure, simply return the current value as displayed in the Order ID

text box.
5. In the PropertyLet procedure, call FindOrderByOrderID, and pass the new property value.

 Store properties for the ActiveX document
1. Add code to store the properties for the Orders document, so when the Orders document is

reinitialized, it displays the appropriate record(the record displayed just before exiting and
saving the document).

2. In the WriteProperties event for the docOrders document, invoke the PropertyBag object's
WriteProperty method to store the current Order ID value into the .vbd file. Use a default
value of –1, as shown in the following code:
PropBag.WriteProperty "OrderID", txtOrderID.Text, -1

3. In the ReadProperties event for the docOrders document, invoke the PropertyBag object's
ReadProperty method to read the stored OrderID property value. Use –1 as a default value,
as shown in the following code:
Me.OrderID = PropBag.ReadProperty("OrderID", -1)

4. In both the ReadProperties and WriteProperties events, use the Debug object to display an
appropriate notification in Visual Basic in the Immediate window.

5. In the Changed event of the Order ID text box, use the PropertyChanged method of the
user document to prompt the user to save changes.

 Test the document
1. After running the project in Visual Basic, use Windows Explorer to note the file size of the

docOrders.vbd file in the Visual Basic folder.
2. Invoke the Home document, and then switch to the Orders document.
3. Move to the last record in the recordset and note the Order ID.
4. Close Internet Explorer. When prompted with the message "Do you want to save the

changes?", click Yes.
Note the file size of docOrders.vbd. (You may need to refresh Windows Explorer to see the
updated file size).

5. Launch the Orders document in the browser, and verify that it starts up with the appropriate
Order ID.

Exercise 3: Extending User Interface Functionality
In this exercise, you will extend the user interface of the container based on the requirements of
the Document object. You will also change the position of the document's controls from the
upper-left corner of Internet Explorer to the center of a browser, regardless of the size of the
window.

You will add a menu associated with the document to the container's menubar when the
Document object is active. You will also specify the container size of the document so that
when either the container's width or height is less than the document size, the appropriate
scrollbars will be displayed.

 Center the document in the browser
In this exercise, you will add functionality to maintain the document's central position in the
browser, regardless of the current size of the browser.
1. Select all of the controls on the docHome document, and click Cut on the Edit menu to move

them to the Clipboard.
The best way to select all of the controls is to use the Pointer button and create a selection
rectangle with the mouse.
2. Maximize the document window, and use a Frame control to fill up the window.
3. Name the control fraMain, and set the caption of the frame to NULL.
4. While the frame is selected, paste the controls back onto the document, thus making the

frame the parent of the pasted controls. Resize the frame and center the controls.
The frame window should be the parent of the copied controls. If the frame is not selected when
you paste the controls, the form will be the parent, rather than the frame.
5. In the Resize event for the UserDocument object, add code to center the frame (fraMain) by

setting the Left and Top properties.

The position of a control on a user document is based on the ScaleMode property of the user
document, just as a control is placed on a form.

The following settings center the Panel control on the user document:

pnlMain.Left = (ScaleWidth - pnlMain.Width) /2
pnlMain.Top = (ScaleHeight - pnlMain.Height) /2

6. Save and test the document for the desired behavior.

 Add a Record Navigation menu to the Orders document
1. Using the Menu Editor, add a Record menu to the Orders document. Add the commands to

the menu for MoveFirst, MovePrevious, MoveNext, and MoveLast.
2. Specify the position of the menu to appear in the middle of the menu for the container.
3. Add code to each of the menu items for the appropriate functionality.

 Set the document's minimum width and height
1. Use the size of the Frame control on the Main document, set the document's minWidth and

minHeight properties.

 Test the project
1. Open the Main document and resize the container until the width and/or height are less than

the frame control on the document, fraMain.
The appropriate scrollbars should be displayed in the window of the document.

2. Switch to the Orders document, and verify that the Record menu is displayed and functional
on the container.

Exercise 4: (Optional) Creating a Document Container
In this exercise, you will modify a project so the executable file can run as a stand-alone
application, and display document objects within their own context.

The WebBrowser control included with Visual Basic lets you add browsing capabilities to your
application. This includes the ability to act as a Document object container.

 Add capabilities to a Document object container
1. Create a form as the parent of the WebBrowser control. Display this form only if the

application is being started in stand-alone mode.
2. Add a form named frmContainer to the project.
3. Add the WebBrowser control to the form.

If the WebBrowser control is not available in the Toolbox, click Components on the Project
menu, and then select Microsoft Internet Controls on the Controls tab.

4. In the Form_Load event, use the WebBrowser control to navigate to the docHome
document object in the Visual Basic folder, as shown in the following code:
WebBrowser1.Navigate "c:\program files\devstudio\vb\docHome.vbd"

5. In the form's Resize event, move the WebBrowser control to fill the client area of the form.

 Determine the Startup mode of the application
Add a Sub Main procedure to the Standard module of a project to test whether or not the
application is being started in stand-alone mode, and take an appropriate action.
1. In stand-alone mode, display the application in the new container form.
2. Add a Sub Main procedure to the Standard module of the project.
3. In the procedure, use the App's StartMode property to check whether the application is

starting in standalone mode, in which case you should display the container form.

 Test the project in stand-alone mode
1. Open the Project Settings property page, and then modify the project so it will run in stand-

alone mode.
2. On the General tab, set the Start Object to Sub Main.
3. On the Components tab, set the Start Mode to Standalone.
4. Run and test the application.

	Lab 10: Creating and Using ActiveX Documents
	Exercise 1: Converting Forms to ActiveX Documents
	Exercise 2: Adding Properties to ActiveX Documents
	Exercise 3: Extending User Interface Functionality
	Exercise 4: (Optional) Creating a Document Container

